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ABSTRACT: Technology is evolving at breakneck pace, changing the way
we communicate, travel, find out information, and live our lives. Yet
chemistry as a science has been slower to adapt to this rapidly shifting
world. In this Outlook we use highlights from recent literature reports to
describe how progresses in enabling technologies are altering this trend,
permitting chemists to incorporate new advances into their work at all

levels of the chemistry development cycle. We discuss the benefits and
challenges that have arisen, impacts on academic—industry relationships, and future trends in the area of chemical synthesis.

B INTRODUCTION

Chemistry is a discipline that both underpins our modern
society and drives innovation and change for the betterment of
everyone.

As our science moves forward so does our need to properly
harness all the new technologies and better integrate all
disciplines and contributing knowledge generators. The
principles of information management, engineering, micro-
processing, and even how living cells manufacture chemical
compounds are all important additional elements in enabling
the future of chemical synthesis programs.

In recent reviews and publications,' > we have been making
the case for why a more machine-assisted approach to the
assembly of functional compounds is necessary to maximize the
human resource, releasing precious time for more cerebral
pursuits such as synthesis planning and the discovery of new
chemical reactivity. These concepts are now gaining traction;
however, while we were writing this outlook article it was
interesting to revisit some of the futuristic and speculative
statements made in our earlier accounts®™* on the need for new
tools and particularly new methods for synthesis. Indeed, our
laboratory of today does reflect many of these changes in that
much of what we do employs flow chemistry and continuous
processing techniques involving a more holistic systems
approach to multistep synthesis.”

We make extensive use of digital camera monitoring and
information feedback to control reaction devices.'’ In our open
access review on this topic,"" we conclude that computer-aided
digital image capture and visualization techniques can improve
laboratory safety, reduce time- and labor-consuming practices,
and create opportunities beyond that of the human eye. We
also anticipate these methods will help record comprehensive
audit trails of our decisions during complex synthesis programs.

Given that we are increasingly using portable and wearable
devices, cell phones, and tablets, we can expect much greater
use of open source software'”'” and the incorporation of
cheap, low-power computers such as the Raspberry Pi (Figure
1). These will all help to facilitate improved equipment
management and communication through the “Internet of
Chemical Things”."*
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Currently many technology companies, such as Google and
Microsoft, are investing heavily in the development of artificial
intelligence and machine learning systems especially for “Big
Data” analysis.'” We envisage that such methods will find great
use in the chemical environment, challenging the dogmas of the
past, by discovering new reactivity patterns from data anomalies
captured by detector systems. Indeed, machine learning
techniques have already found use in synthesis planning, with
the Chematica system able to perform retrosynthetic analysis
effectively, taking into account a variety of parameters including
reagent cost and number of synthetic steps.'® Our fume hoods
are also evolving to become more interactive and to
accommodate a new style of working focused on being more
flexible and energy efficient. These developments coincide with
the general miniaturization of analytical equipment for IR, MS,
Raman, conductivity, and NMR. Other synthesis laboratory
developments are rapidly being assimilated such as 3D printing
tools,'’"~'” head-up displays, and integrated screening meth-
ods. 1320

This outlook article addresses a few key issues remaining
where enabling methods of synthesis are impacting but where
maybe a bolder vision is required to motivate new advances,
affecting work carried out across the entire spectrum of
development—from discovery right through to manufacturing.

B MACHINES AS A DISCOVERY TOOL

The multistep preparation of any of society’s functional
molecules still today relies on robust chemical processes that
were often discovered decades ago. This contrasts sharply with
other scientific disciplines where accelerated modern develop-
ments of computer-based technology drive the discovery
process. While great strides in kinetic analysis”' ~** and reaction
prediction'” are being made, there still exists a challenging task
to discover new reactivity and invent new reactions that are of
broad strategic value since these are key to the advancement of
the subject.
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Figure 1. New developments in small, low-cost computing devices
such as the Raspberry Pi (pictured) are driving advances in reaction
control strategies.

The multistep preparation of any
of society’s functional molecules
still today relies on robust chem-
ical processes that were often
discovered decades ago.

Although machines and automation have contributed to the
discovery of new reactions at a research and development level,
particularly through the use of high throughput catalyst
screening platforms,™ this somewhat brute-force approach is
in need of further innovation. A report in 2011 describes an
accelerated discovery approach whereby compounds from a
broad library of functionally diverse species were combined in
96-well reactor plates with varied catalyst systems.”® The plates
were then exposed to fluorescent light to facilitate new
photoredox processes and hence discover new reactivity. A
gas chromatography MS system monitored the formation of
unexpected products which could be further optimized through
new rounds of synthesis if desired. The concept has already
proved its worth, leading to a new amine C—H arylation
reaction. This approach greatly accelerates the number of trials
that can be carried out by researchers within a fixed period of
time, reducing the impact of developmental bottlenecks in
traditional workflows.

Further machine-based reaction discovery has been realized
through the exploration of novel processing windows,”’ >’
especially involving hazardous reactive intermediates.”’ For
example, unstabilized aryl and vinyl diazo compounds are
hazardous and toxic and are correspondingly very difficult to
handle during classical batch processes. However, it is possible

to generate these unstable diazo compounds from hydrazones
through the use of continuous flow chemistry equipment. They
can then be translocated, without isolating, to a new chemical
environment to explore new reactivity patterns (Figure 2).

A case in point shows that by reacting these species with
boronic acids, a room temperature, non-metal catalyzed sp*—
sp> cross-coupling can be achieved.”’ These flow techniques for
diazo generation (using MnO,) and the translocation steps
were also used for cyclopropanations® and the generation of
di- and trisubstituted allenes,® something that had been
particularly difficult to achieve under batch conditions.

We were additionally able to show that these general
concepts could be used in an iterative fashion to build
molecular complexity rapidly by the sequential addition of
different flow generated diazo species to homologate boronic
acids (Figure 3).>* Such a technique can be used to generate
unusual backbone structures for possible new pharmaceutical
molecules at the discovery level.

In a separate study, we extended the use of flow techniques
to identify a reaction that reached completion with good yields
under continuous conditions, but was not effective in batch
mode.>® We found that a-dibromoketones, which are useful
synthetic building blocks, could be formed from ethyl esters
when the reaction was conducted under carefully controlled
processing conditions (Figure 4).

There are also other examples where flow chemistry and
machine use has enabled reactivity over and above that possible
in batch. The reader here is directed to the pioneering work by
Yoshida,**™*" who has beautifully demonstrated the power of
fast flow microreactor combinations to conduct sequential
processing that is compatible with wide ranging chemical
functionality (for example, Figure S). These dynamic
conditions cannot be achieved in batch-mode reactions.

Although it is fairly early days yet, it is clear that the
developing machine-assisted approaches to discovering and
exploiting new reactivity shows considerable promise. Through
improved equipment advances and better integration of
techniques, we can expect to see further enhancements, most
notably through new purpose built facilities. These centers of
innovation will involve the wider chemical community
including engineers, informaticians, and business entrepreneurs.

B MACHINE ASSISTANCE AND CONTINUOUS
PROCESSING

By and large organic synthesis chemists are content with their
hard earned experimental skill set. As a consequence, while the
methods of synthesis continue to evolve rapidly, we see little in
terms of a revolutionary change in the equipment used for
synthesis. Indeed, the tools of synthesis have changed very little
over time—we can still recognize glassware and tools such as
distillation equipment, separation flasks, and chromatography
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Figure 2. Flow chemistry techniques allow for the production and translocation of unstabilized diazo compounds from hydrazones. Reproduced

from ref 31. Copyright 2015 Royal Society of Chemistry.
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Figure 3. Molecules with unusual backbone structures could be formed by the iterative reaction of diazo species with boronic acids. Modified from

ref 34.
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Figure 4. Equipment schematic for the flow production of a-dibromoketones, a reaction that was not effective in batch.
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Figure S. Fast flow reactions can only occur in flow-mode and are
capable of working with a variety of functional groups. Reproduced
from ref 36 with permission. Copyright 2013 The Royal Society of
Chemistry.

methods that have remained substantially unchanged for a long
period of time. This is in contrast to other areas of science
where new systems are incorporated and used rapidly, soon
after creation. One way of reducing this stagnation is to use
machinery and methods of continuous improvement (opti-
mization) to solve problems. Indeed, it surely makes sense that
the routine, scale-up, and repetitive tasks of the past are better
resolved by the use of new machinery.

If we understand the problem we can solve it and it is often
an engineering problem as much as a chemistry problem that is
faced by researchers. It is important therefore that there is
greater continuity between the different working environments,
from discovery to process development and on to full-scale
manufacturing. Many of the concepts and tools used at scale
have relevance also at the discovery level.

With all of this in mind, we need to evaluate the science with
different criteria whereby the machine and other enabling
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technologies of continuous processing and control are key
design elements of the system in total.

The benefits that can be realized through the use of machine
assistance need not be limited to a few specific opportunities,
but rather a broader view across all synthesis environments is
necessary. The use of machines to perform routine tasks is also
common place in industry over virtually all sectors. The
pharmaceutical and fine chemical society however has been
slow to adopt continuous processing technologies, at least at
the earlier stages of chemical production. Other industries on
the other hand are more nimble and react to change based on
consumer demand. The product development cycle in the
chemical industry is not as compressed as other industries,
consequently conservatism and a reliance on traditional
methods dominate thinking.

Nevertheless, some players in the arena are adopting the use
of these new enabling technologies to reduce the discovery-to-
manufacturing time frame."' It could be argued that historically
high revenues, lack of competition, and commercial inertia have
resulted in businesses not needing to change their methods.
With increased levels of globalization and shrinking major
markets, soon these companies will realize that change is
necessary.

In our group we have recently demonstrated how full
machine assistance enabled a single researcher to manage and
control a continuous telescoped three-step synthesis process
(with five intermediate downstream processing steps, Figure 6)
to form a biologically active precursor.” Although we have been

The benefits that can be realized
through the use of machine
assistance need not be limited to
a few specific opportunities, but
rather a broader view across all
synthesis environments is
necessary.
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Figure 6. A fully telescoped, eight-step system was able to be managed by a single researcher through machine assistance and the use of low-cost

computing devices.

using automated techniques for over a decade,” recent
advances in cheap computer control now greatly enhance
experimental design and the setup of equipment. Through the
adoption of machine assistance in this case, the number of
researchers required to manage such a process was greatly
reduced. Such an approach has the capability to liberate the
scientific workforce to focus on more productive tasks both in
academic settings but also in industrial laboratories.

Another illustration of the power of these methods was the
machine-assisted preparation of the front-line drug tamoxifen
for the treatment of breast cancer.”” Using a simple
experimental reactor system occupying only a small footprint
(Figure 7), a production rate of over 220 g day ' of drug
material was achieved, equating to 20 000 doses day ™.

A team at MIT has also reported an impressive end-to-end
continuous production of aliskiren from late-stage precursors.
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This process involved two chemical steps with additional
downstream processing to deliver material fully packaged into a
tablet format.***

Over the past decade, there has been a significant rise in the
personal possession of electronic devices, particularly smart-
phones. Owing to the Internet-based nature of these systems,
users can access information from wherever they might be
located. As such this concept of “data at fingertips” is something
we are very familiar with, yet its true potential in the laboratory
has not been fully explored. The ability to access experimental
data on-demand will shift the landscape of day-to-day work in
chemical laboratories, with researchers’ ability to share and
propagate results made greatly simpler. Equipment will be
configured remotely, releasing workers from being tied to one
location and enhancing workplace safety. We can expect to see
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Figure 7. A simple equipment configuration enabled the production of
20 000 tamoxifen doses per day. Reproduced from 43. Copyright 2013
American Chemical Society.
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Figure 8. (a) The equipment layout used for the Appel reaction
optimization; (b) the Appel reaction carried out; (c) the five
parameters optimized by the control system. Partial reproduction
from ref 46.

increases in collaboration arising from a more connected series
of laboratories.

As a first step toward this ideal, we developed an Internet-
based software platform which facilitates the monitoring and
control of chemical reactions from anywhere in the world.*
Flow Chemistry, by nature, is modular—researchers can mix-
and-match reactor configurations and ancillary support tools at
any time. Accordingly, the control system was built from the
ground up so as to ensure full compatibility with the modular
flow chemistry approach to problem solving. As the software
was capable of setting reaction conditions and monitoring
reactor outputs using detectors, we incorporated a self-
optimization module into the system to explore the full
benefits of machine assistance.

Using this module, a computer was able to optimize reactions
(including a five-dimensional Appel reaction, Figure 8) with no
input from a human. In these cases, the system was optimizing
conditions from a fresh start—there were no experiments
carried out by hand prior to the control system operating.
Importantly, the system did not just optimize for yield but
included additional terms such as throughput potential and cost
considerations that would be taken into account by a chemist
performing the procedure manually. Other such interesting
examples of automated optimization have been described in
recent reviews and publications.*’ >
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B BRIDGING ACADEMIA WITH INDUSTRY USING
ENABLING TECHNOLOGIES

It is clear that traditional methods of making molecules have
reached somewhat of a watershed in that there is a widespread
belief that if we can design a functional molecule of interest we
can make it and there is little new to discover.

Only those, however, who are fully engaged in the process
truly understand just how wrong this idea is. Our chemistry
today is just not good enough to deliver the products of the
future. Our waste product streams, lack of robustness, and cost
of materials all conspire to deliver unsustainable processes.
Things must change. In particular, there is a disconnection
between fundamental academic discoveries, the needs of a user
industry, and our ability to deliver our chemistries on scale.
Technology developments have a major role to play in bridging
these different worlds.”’

This need was recognized and discussed recently in a
concept article, written by authors associated with large
pharmaceutical companies (Merck, Pfizer, and Bristol Myers
Squibb).”” They described the importance of precompetitive
research, in which the outcomes from collaborations are
released publically without traditional protections in an attempt
to stimulate additional research in areas of common interest.
The pharmaceutical industry has of course been historically
adverse to this idea, largely owing to the highly competitive
nature of their business. It is refreshing therefore to see this
change in emphasis which can only be good for the science of
synthesis.

Likewise, others have shared from the academic community.
Baran has described how, in the realm of batch-based natural
product synthesis, collaborations between industry and
academia can lead to a symbiotic relationship.” Industry is
able to, in effect, buy access to very specialized knowledge
which would normally take many years to amass in-house at
considerable expense, while academic groups are provided with
much needed financial support for relevant research projects.’

Our group has benefited from such a relationship with
industry, allowing us to shape some areas of our research
program to better suit those sectors which find them most
useful, such as the makers of pharmaceutical and agrochemical
products. In particular, we have developed flow methods
utilizing solid catalysts, with a particular focus on trans-
formations that produce volatile byproducts.”* >’ By applying a
machine-assisted approach, we were able to drastically reduce
the overall cost of processes, cutting the number of downstream
operations required. In one particular example, we were able to
define a laboratory scale process which would later pave the
way to kilogram-scale production.’®

While supporting these sentiments, we would want to go
further in promoting the interface between our high schools,

Industry is able to, in effect, buy
access to very specialized knowl-
edge which would normally take
many years to amass in-house at
considerable expense, while aca-
demic groups are provided with
much needed financial support
for relevant research projects.
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Figure 9. A three-step process was developed that enabled the rapid production of ibuprofen from a unit of very small size. Reproduced from ref 60

with permission. Copyright 2015 John Wiley and Sons.

universities, and industry. Open innovation, enterprise and
technology transfer programs begin this process, but staff
secondments, retraining programs, and overall greater flexibility
in terms of concepts and philosophy will be necessary to
transform where we are today to a new level of responsibility.

B SYNTHESIS ON DEMAND

Accelerating the rate of work through contract research
organizations (CRO) and parallel methods of synthesis is
seen by some as financially attractive, yet it has done little to
advance our subject. New understanding and development of
knowledge only arise where unique and advanced skills are
involved. Simply increasing the workforce constitutes little step-
change in product outcome and virtually no gain in conceptual
advancement. We must wake up and recognize a new approach
is necessary.

Some initiatives are underway to address some of these
issues, namely, the “Dial a Molecule” program in the UK and
the DARPA sponsored project “Make it” in the USA. These
research programs aim to develop an automated chemical
synthesizer capable of delivering a push button approach to
producing and purifying in-line a wide range of small, functional
molecules on demand and at scale. These programs will go
beyond the current equipment capabilities and will need to
integrate up-front computational methods for synthesis
planning and prediction. Furthermore, greatly improved
hardware and software will be necessary to facilitate multistep
autonomous control to incorporate all necessary downstream
and intermediate processing and analysis.

A recent report described a system that goes some way to
achieving this goal, focusing on the modularity benefits
obtained through the use of flow chemistry techniques.”” By
changing reaction parameters, including starting materials and
position of modules relative to others, it was possible for the
system to produce molecules throughout a wide chemical
space. The production of y-lactams, f-amino acids, and y-amino
acids was reported.

In a separate study, a method to produce ibuprofen at a rate
of 8 ¢ h™! using a very small system was described (its footprint
was half the size of a standard fume hood).”” This process
consisted of three chemical transformation steps (Figure 9) and
was capable of producing the active pharmaceutical ingredient
(API) with a residence time of just 3 min.

B FINAL COMMENTS

We conclude with a few final comments. Although our group
can claim that over the years we have operated a very successful
and wide ranging synthesis program, we are only too well aware
of the current limitations of our science. Fortunately, our
methods of synthesis are improving exponentially, but this
cannot continue without equivalent advances in the tools of
synthesis, particularly machine-assisted processes. This calls for
more collaboration with engineers, informaticians, computa-
tional scientists, and robotics and software developers.

It might also suggest the fundamentally important 12
principles of green chemistry,’’ which has been a journey and
with us for over 20 years as a charter for life as a synthesis
chemist, need to be revisited with today’s eyes. For example, we
see a much greater need to protect the human resource from
overuse, not just our materials. We need therefore to avoid
many of the labor-intensive practices common to many of the
synthesis programs today.”” We must address inefficiencies by
avoiding the unit operations typically used in downstream
processing. We must accept greater responsibility for our
actions through leadership and management of our resources.
Our precious metals footprint is as important as our carbon
footprint, for example. All of this requires a shift in philosophy
which implies that education and training need to evolve at a
similar pace.

The chemistry community traditionally has been resistant to
changes of this nature, resulting in general inertia. Yet we as
humans are evolving rapidly in the way we process information
and approach problems, so it is not a great surprise that our
working regimes should change too. No longer is it practical or
commercially viable for a workforce to use techniques that are
many decades old. The future of chemical synthesis will be
owned by a workforce combining historical literature
experience with new ideas for finding and interpreting data,
with practical work augmented by new machinery and tools.
The sooner this philosophy is adopted, the sooner the benefits
will accrue.

These are exciting times for our subject and we are looking
forward to see what the future will bring.

We must accept greater respon-

sibility for our actions through

leadership and management of
our resources.
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